Package: optimalThreshold 1.0

optimalThreshold: Bayesian Methods for Optimal Threshold Estimation

Functions to estimate the optimal threshold of diagnostic markers or treatment selection markers. The optimal threshold is the marker value that maximizes the utility of the marker based-strategy (for diagnostic or treatment selection) in a given population. The utility function depends on the type of marker (diagnostic or treatment selection), but always takes into account the preferences of the patients or the physician in the decision process. For estimating the optimal threshold, ones must specify the distributions of the marker in different groups (defined according to the type of marker, diagnostic or treatment selection) and provides data to estimate the parameters of these distributions. Ones must also provide some features of the target populations (disease prevalence or treatment efficacies) as well as the preferences of patients or physicians. The functions rely on Bayesian inference which helps producing several indicators derived from the optimal threshold. See Blangero, Y, Rabilloud, M, Ecochard, R, and Subtil, F (2019) <doi:10.1177/0962280218821394> for the original article that describes the estimation method for treatment selection markers and Subtil, F, and Rabilloud, M (2019) <doi:10.1002/bimj.200900242> for diagnostic markers.

Authors:Yoann Blangero [aut, cre]

optimalThreshold_1.0.tar.gz
optimalThreshold_1.0.zip(r-4.5)optimalThreshold_1.0.zip(r-4.4)optimalThreshold_1.0.zip(r-4.3)
optimalThreshold_1.0.tgz(r-4.4-any)optimalThreshold_1.0.tgz(r-4.3-any)
optimalThreshold_1.0.tar.gz(r-4.5-noble)optimalThreshold_1.0.tar.gz(r-4.4-noble)
optimalThreshold_1.0.tgz(r-4.4-emscripten)optimalThreshold_1.0.tgz(r-4.3-emscripten)
optimalThreshold.pdf |optimalThreshold.html
optimalThreshold/json (API)

# Install 'optimalThreshold' in R:
install.packages('optimalThreshold', repos = c('https://yblan.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • jags– Just Another Gibbs Sampler for Bayesian MCMC
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 217 downloads 15 exports 8 dependencies

Last updated 5 years agofrom:66de5c78d7. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winOKNov 15 2024
R-4.5-linuxOKNov 15 2024
R-4.4-winOKNov 15 2024
R-4.4-macOKNov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:cdfcredibleIntervalsdecisionCurvedensCurvesdiagThreshestimatesfitgradienthessianplotriskCurvessamplePosteriorDistshowsummarytrtSelThresh

Dependencies:arscodaHDIntervallatticeMatrixmgcvnlmerjags

Readme and manuals

Help Manual

Help pageTopics
An S4 union class to represent allowed dist object.allowedDist allowedDist-class
An S4 union class to represent allowed fitDist objects.allowedFitDist allowedFitDist-class
Cumulative distribution function of a specified distributioncdf cdf,compoundEvtInnovDist-method cdf,compoundEvtRefDist-method cdf,compoundNoEvtInnovDist-method cdf,compoundNoEvtRefDist-method cdf,gammaDist-method cdf,logisticDist-method cdf,logNormalDist-method cdf,normalDist-method cdf,studentDist-method cdf.compoundEvtInnovDist cdf.compoundEvtRefDist cdf.compoundNoEvtInnovDist cdf.compoundNoEvtRefDist cdf.gammaDist cdf.logisticDist cdf.logNormalDist cdf.normalDist cdf.studentDist
An S4 class to represent a compound distribution.compoundEvtInnovDist compoundEvtInnovDist-class
An S4 class to represent a compound distribution.compoundEvtRefDist compoundEvtRefDist-class
An S4 class to represent a compound distribution.compoundNoEvtInnovDist compoundNoEvtInnovDist-class
An S4 class to represent a compound distribution.compoundNoEvtRefDist compoundNoEvtRefDist-class
Credible intervals estimationcredibleIntervals credibleIntervals,diagOptThresh-method credibleIntervals,trtSelOptThresh-method credibleIntervals.diagOptThresh credibleIntervals.trtSelOptThresh
Decision curve plotdecisionCurve decisionCurve,diagOptThresh-method decisionCurve,trtSelOptThresh-method decisionCurve.diagOptThresh decisionCurve.trtSelOptThresh
Density curves plotdensCurves
An S4 class to describe the optimal threshold of a diagnostic marker.diagOptThresh diagOptThresh-class
An S4 class to sum up the results from the decisionCurve methods.diagRelUtility diagRelUtility-class
Estimation of the optimal threshold of a diagnostic markerdiagThresh
Indicator estimatesestimates estimates,diagOptThresh-method estimates,trtSelOptThresh-method estimates.diagOptThresh estimates.trtSelOptThresh
Specify which distribution to fit on the marker valuesfit
An S4 class to fit a gamma distribution on a vector of marker values.fitGammaDist fitGammaDist-class
An S4 class to fit a logistic distribution on a vector of marker values.fitLogisticDist fitLogisticDist-class
An S4 class to fit a log-normal distribution on a vector of marker values.fitLogNormalDist fitLogNormalDist-class
An S4 class to fit a normal distribution on a vector of marker values.fitNormalDist fitNormalDist-class
An S4 class to fit a Student distribution on a vector of marker values.fitStudentDist fitStudentDist-class
An S4 class to fit a user-defined distribution on a vector of marker values.fitUserDefinedDist fitUserDefinedDist-class
An S4 class to represent a gamma distribution.gammaDist gammaDist-class
Probability density function of a specified distributiongradient gradient,compoundEvtInnovDist-method gradient,compoundEvtRefDist-method gradient,compoundNoEvtInnovDist-method gradient,compoundNoEvtRefDist-method gradient,gammaDist-method gradient,logisticDist-method gradient,logNormalDist-method gradient,normalDist-method gradient,studentDist-method gradient.compoundEvtInnovDist gradient.compoundEvtRefDist gradient.compoundNoEvtInnovDist gradient.compoundNoEvtRefDist gradient.gammaDist gradient.logisticDist gradient.logNormalDist gradient.normalDist gradient.studentDist
Second derivative of the cumulative distribution function of a specified distributionhessian hessian,compoundEvtInnovDist-method hessian,compoundEvtRefDist-method hessian,compoundNoEvtInnovDist-method hessian,compoundNoEvtRefDist-method hessian,gammaDist-method hessian,logisticDist-method hessian,logNormalDist-method hessian,normalDist-method hessian,studentDist-method hessian.compoundEvtInnovDist hessian.compoundEvtRefDist hessian.compoundNoEvtInnovDist hessian.compoundNoEvtRefDist hessian.gammaDist hessian.logisticDist hessian.logNormalDist hessian.normalDist hessian.studentDist
An S4 class to represent a logistic distribution.logisticDist logisticDist-class
An S4 class to represent a log-normal distribution.logNormalDist logNormalDist-class
An S4 union class to merge mcmc.list and NULL types of object.mcmc.listOrNull mcmc.listOrNull-class
An S4 class to represent a normal distribution.normalDist normalDist-class
Plot methodplot,diagOptThresh-method plot,trtSelOptThresh-method plot-methods plot.diagOptThresh plot.trtSelOptThresh
Plot the decision curves of a diagnostic markerplot,diagRelUtility-method plot.diagRelUtility
Plot the decision curves of a treatment selection markerplot,trtSelRelUtility-method plot.trtSelRelUtility
Marker-by-treatment predictiveness curves plotriskCurves
Sample in the posterior distribution of the parameters of a given theoretical distribution.samplePosteriorDist samplePosteriorDist,fitGammaDist-method samplePosteriorDist,fitLogisticDist-method samplePosteriorDist,fitLogNormalDist-method samplePosteriorDist,fitNormalDist-method samplePosteriorDist,fitStudentDist-method samplePosteriorDist.fitGammaDist samplePosteriorDist.fitLogisticDist samplePosteriorDist.fitLogNormalDist samplePosteriorDist.fitNormalDist samplePosteriorDist.fitStudentDist
Show methodshow,diagOptThresh-method show,trtSelOptThresh-method show-methods show.diagOptThresh show.trtSelOptThresh
An S4 class to represent a scaled Student distribution.studentDist studentDist-class
An S4 method that summarizes the results of a 'trtSelOpthThresh' or a 'diagOpthThresh' object.summary,diagOptThresh-method summary,trtSelOptThresh-method summary-methods summary.diagOptThresh summary.trtSelOptThresh
An S4 class to describe the optimal threshold of a treatment selection marker.trtSelOptThresh trtSelOptThresh-class
An S4 class to the results from the decisionCurve methods.trtSelRelUtility trtSelRelUtility-class
Estimation of the optimal threshold of a treatment selection markertrtSelThresh
An S4 class to represent an 'undefined' distribution.undefined undefined-class